Investor Choice: Risk and Reward

We are still after the same prize: a good estimate of the corporate cost of capital
E (r) in the NPV formula. But before you can understand the opportunity costs of
capital for your firm’s own projects, you have to understand your investors’ other
opportunities. This means that you must understand better what investors like
(reward) and what they dislike (risk), how they are likely to measure their risks
and rewards, how diversification works, what portfolios smart investors are likely
to hold, and why it matters that “market beta” is a good measure of an investment
asset’s contribution to the market portfolio’s risk.

8.1 Measuring Risk and Reward

Put yourself into the shoes of an investor and start with the most basic questions: How should you
measure the risk and reward of your portfolio? As always, we first cook up a simple example and
then generalize our insights into a broader real-world context. Say you are currently investing
in an asset named M, short for “My Portfolio,” but there are also other assets you could buy,
named A through C, plus a risk-free asset named F. These assets could themselves be portfolios,
themselves consisting of many individual assets and/or yet other portfolios. (This is essentially
what a mutual fund is.) So, let’s just call M, A, B, C, and F themselves portfolios, too.

We will work with four equally likely scenarios, named S1 through S4, for each of the five
portfolios. The outcomes, means, and risks are laid out in the tabular portfolio of Exhibit 8.1.
Each scenario gets a card deck suit to remind you that it is a random draw. (If you find it easier
to think in terms of historical outcomes, you can pretend that you are analyzing historical data:
scenario S1 happened at time 1, S2 at time 2, and so forth. This is not entirely correct, but it is
often a helpful metaphor.) Which investment strategies do you deem better or worse, safer or
riskier? If you can buy only these portfolios, what trade-offs of risk and reward are you facing?

If you like visuals, Exhibit 8.1 also shows these returns in graphic form. The middle figure is
the standard histogram, which you have seen many times elsewhere. However, each scenario is
equally likely (the bars are equally tall), so it’s more visually obvious to just put the card suit
symbols where the bar is. This is what we do in the lower figure. It makes it easier to compare
many different investments.

In this plot, you prefer assets that have scenario outcomes farther to the right (they have
higher returns), outcomes that are on average farther to the right (they have higher expected
rates of return), and outcomes that are more bunched together (they have less risk). Visual
inspection confirms that investment F has outcomes perfectly bunched at the same spot, so it is
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We work with five assets
that have four equally likely
outcomes.

Historical samples can be
viewed as scenarios.

» Why this is not entirely correct,
Pg.185.

Graphics version of the
table.

In a histogram, bars to the
right mean higher returns.
Bars that are more spread
out indicate higher risk.

» Random variables are histograms,
Pg.105.
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InS1 InS2 InS3 InS4 Reward Variance? Risk
(%) (*) (v (®) E(r) Var‘(r) de(r)

Investment M -3% 3% 5% 11% 4% 25%% 5%
Investment A 3% 11% -3% 5% 4% 25%% 5%
Investment B 5% -1% 7% 13% 6% 25%% 5%
Investment C 17% 3% 11% -7% 6% 81%% 9%
Investment F 1% 1% 1% 1% 1% 0%% 0%
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Exhibit 8.1: Rates of Return on Five Investment Assets. There are only four possible future scenarios, S1 through S4, each
equally likely and indicated with a card suit. There are only 5 available investments (M, A, B, C, and F). (These could
themselves be portfolios, of course.) The variance (Var) and standard deviation (Sdv) were explained in Section 6.1.
The middle figure is a “traditional” histogram of M. The bottom figure contains the “condensed” histograms for all 5 assets.

Table note [a]: We use the ‘%%’ notation only for variance computations. Just like ‘%’ means ‘divide by 100’, ‘%%’ means ‘divide
by 100 and then divide by 100 again’, i.e., ‘divide by 10,000’. This makes it easy to see that v/ (5%)2 + (5%)2 + (5%)2 + (5%)?2 is

v/ (25%% + 25%% + 25%% + 25%% = 100%%) = 10%. If you find it easier to read +/(0.0025 + 0.0025 + 0.0025 + 0.0025 = 0.01) =
10%, then be my guest and use this notation instead. The answers are always the same.
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not just least risky but in fact completely risk-free. It is followed by the risky M and A, then B,
and finally, the riskiest investment, C.

Measuring Reward: The Expected Rate of Return

Although graphical measures are helpful, we really need formulas to give us numerical measures.
A good measure for the reward is easy: You can use the expected rate of return, which is the
probability-weighted average of all possible returns. For example, the mean rate of return for
your portfolio M is

E(rm) = (Ya) - 3%) + (Ya) - (+3%) + (Ya) - (+5%) + (V4) - (+11%) = + 4%

= Sum of (each probability times its outcome)

If you invest in M, you would expect to earn a rate of return of 4%. Because each outcome is
equally likely, you can compute this faster as a simple average,

E(rm) = [(3%) + (+3%) + (+5%) + (+11%)1/4 = 4%

Measuring Risk: The Standard Deviation of the Rate of Return

A good measure of risk is less obvious than a good measure of reward, but fortunately you
already learned a good measure—the standard deviation—in Section 6.1. Let’s compute it in the
context of our assets. We first write down how far away each point is from the center (average).
You just saw that the average for M was +4%. An outcome of +3% would be closer to the mean
than an outcome of -3%. The former is only 1 unit away from the mean. The latter is 7 units
away from the mean.

InS1(&) InS2(¢) InS3(V¥Y) InS4(#)
Asset M Rate of Return -3% +3% +5% +11%
...in deviation from its 4% mean -7% -1% 1% +7%

Unfortunately, you cannot compute risk as the average deviation from the mean, which is
always zero ([-7 + (-1) + 1+ 7]/4 = 0). You must first “neutralize” the sign, so that negative
deviations count the same as positive deviations. The “fix” is to compute the average squared
deviation from the mean. This is the variance:

Var(ry) = Ya- (=3% - 4%)2 + s - (3% — 4%)% + Vs - (5% — 4%) + Vg - (11% — 4%)>
= [(<7%)2 + (-1%)? + (+1%)? + (+7%)?]/4 = 25%% (8.1)
= Sum of (each probability times its squared-deviation-from-the-mean)

The variance has units that are intrinsically impossible to interpret by humans (% squared
=0.01-0.01, written as x%%). Therefore, the variance carries very little intuition, except that
more variance means more risk.

Measure reward with the
expected rate of return.

Measure risk with the
standard deviation of the

rate of return.

» The standard deviation (measure of

risk),
Sect. 6.1, Pg.108.

The average deviation from
the mean is always O. It
cannot measure risk.
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The standard deviation of
the portfolio's rate of
refurn is a common measure
of risk.

IMPORTANT

A preview: Smart investors
eliminate unnecessary risk.
After they have done so,
more reward requires taking
more risk.

The measure that has more humanly meaningful (humane?) units is the standard deviation,
which is just the square root of the variance:

Sdv(ry) = 4/ Var(ry) = vV25%% = 5% (8.2)

The standard deviation of the portfolio’s rate of return is the most common measure of overall
portfolio risk. Now look again at Exhibit 8.1. You can see that this standard deviation of 5%
seems like a reasonable measure of how far the typical outcome of M is away from the overall
mean of M. (However, 5% is more than the average absolute deviation from the mean, which in
this case would be 4%; the standard deviation puts more weight on far-away outcomes than the
average absolute deviation.) The last column in Exhibit 8.1 lists the standard deviations of all
investments. As the visuals indicate, F is risk-free; M, A, and B are equally risky at 5%; and C is
riskiest at a whopping 9%.

* You can measure investment portfolio reward by the expected rate of return on the overall
portfolio.

* You can measure investment portfolio risk by the standard deviation of the rate of return
on the overall portfolio.

(Warning: You will not measure the investment risk contributions of individual assets inside a
portfolio via their standard deviations. This will be explained in Section 8.3.)

At this point, you should begin to wonder how risk and reward are related in a reasonable
world. This will be the subject of much of the next chapter. The brief answer for now is that you
can speculate in dumb ways that give you high investment risk with low reward—as anyone
who has gambled knows. However, if you are smart, after eliminating all investment mistakes
(the low-hanging fruit), you have no choice but to take on more risk if you want to earn higher
rewards.

Q 8.1. What happens if you compute the average deviation from the mean, rather than the
average squared deviation from the mean?

Q 8.2. Asset M from Exhibit 8.1 offers —3%, +3%, +5%, and +11% with equal probabilities.
Now add 5% to each of these returns. This new asset offers +2%, +8%, +10%, and +16%.
Compute the expected rate of return, the variance, and the standard deviation of this new asset.
How does it compare to the original M?

Q 8.3. Confirm the risk and reward of C in Exhibit 8.1.

Nerdnote: It would be really convenient if we could quote all gambles on the same terms. We could then
easily compare them, like apples to apples. Fortunately, such a measure exists. It is called the “certainty
equivalence.” Unfortunately, it depends on a more complex model of the world, and it is notoriously difficult
to get used to. Thus, we will cover it only in the companion Web chapter.
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8.2 Diversification

In the real world, you are usually not constrained to buy assets in isolation—you can buy a little
bit of many assets. This ability to buy many assets has the important consequence of allowing
you to reduce your overall portfolio risk. Let’s see why.

An Example Mixing Portfolio

Start again with your portfolio M. Now let’s consider adding some of portfolio A. Why would
you? It has the same risk and reward as M. However, although A has the same list of possible
returns, it offers them in different scenarios. This rearrangement will make a lot of difference. So,
let’s say you have $100 in M, but you now sell half of these holdings to buy A. You will have $50
in M and $50 in A. Let’s call this investment portfolio MA. In this case, your $100 investment
would look like this:

InS1 (%) InS2(¥) InS3(¥Y) InS4(#) Average

Return on $50 in M: $48.50 $51.50 $52.50 $55.50 $52.00
Return on $50 in A: $51.50 $55.50 $48.50 $52.50 $52.00
= Total return in MA: $100.00 $107.00 $101.00 $108.00 $104.00
Rate of return in MA: 0% 7% 1% 8% 4%

You could have computed this more quickly by using the returns on M and A themselves.
Your portfolio MA invests portfolio weight wy; = 50% into M and w = 50% in A. For example,
to obtain the 7% in scenario S2, you could have computed the portfolio rate of return from M’s
3% rate of return and A's 11% rate as

'MA = I'MA=50%in M,50% in A (allins2) = ©50%-3% + 50%-11% = 7%

I'MA=(wy;,w,) in S2 = WM IMins2 T WA "TAinsS2

Now let’s look at these three portfolios (M, A, and MA) in a histogram. Even better, because
our histogram bars are all equally tall, we can omit the bars and plot just the symbols. As
Exhibit 8.2 shows, the range of M is from —-3% to +11%; the standard deviation is 5%. The range
of A is also from —3% to +11%; the standard deviation is also 5%. Yet the average of M and A
has a much lower range (0% to 8%) and a much lower standard deviation:

(0% — 4%)2 + (7% — 4%)2 + (1% — 4%)? + (8 — 4%)*

Many assets at the same
time.

Portfolios are bundles of
multiple assets. Their
returns can be averaged.

Visually, the M and A
combination portfolio called
MA has lower variability
(risk and range) than either
Mor A.

Var 50%inM = 4 = 12.5%%
50%in A
s - E(r)1? +[rs2 - E(r)]* + [rs3 - E(r)1* + [rs4 - E(r)1?
N

— Sdv 50%inM, 50%inA — V Var = v12.5%% ~ 3.54%

MA is simply less risky than either of its ingredients.

The reason for this reduction in risk is diversification—the mixing of different investments
within a portfolio that reduces the impact of each one on the overall portfolio performance.
More simply put, diversification means that not all of your eggs are in the same basket. If one
investment component goes down, the other investment component sometimes happens to go
up, or vice-versa. The imperfect correlation (“non-synchronicity”) reduces the overall portfolio
risk.

This is caused by
diversification.
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InS1 InS2 InS3 InS4 Reward Variance Risk
CYNENCO NG SRR CY E(r) Var(r) Sdv(r)
Investment M -3% 3% 5% 11% 4% 25%% 5%
Investment A 3% 11% -3% 5% 4% 25%% 5%
Portfolio MA 0% 7% 1% 8% 4%  12.5%% 3.54%
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Exhibit 8.2: Rate of return outcomes for M, A, and the (50%, 50%) combination portfolio MA. Because each half-M/half-
A point is halfway between M and A, MA has lower spread (risk) than either of its components, M and A, by themselves.

Q 8.4. The combination portfolio named MA invests 90% in M and 10% in A.

1. Compute its risk and reward.

2. In a plot similar to those in Exhibit 8.1, would this new MA portfolio look less spread out
than the MA = (50%, 50%) portfolio that was worked out in the table in Exhibit 8.2?

How Risk Grows With Time

Before we continue, I need to cover two aspects that fit more into the subfield of investments
than into the subfield of corporate finance. But both are important for a general competence in
finance. We will look only at them in passing.

Brief important diversions.

) The first diversion is about how risk grows with time. Trust me on the following: If two
If two variables are . . .
: random draws are independent, then the sum of these two random variables has a variance that
uncorrelated, the variance B -
of the sum is the sum of the 1S the sum of the two variances.

variances.
VC(r‘(X + Y) = Var‘(X) + Var'(Y) if X and Y are uncorrelated

(This is not true if the two variables move together!) Why should you care? Well, the rates of return
of any one asset in a perfect market should be uncorrelated over time—if not, you could earn an
extra rate of return by trading this asset based on its own lagged return. (If the correlation were
positive, you would get rich quick by buying the asset after it has gone up and selling it after it
has gone down.)
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Now let’s use an approximation: Ignore compounding. This means that the total return is
approximately the sum of the consecutive returns. Now, if you expect a stock to earn a 10% mean
expected rate of return with a standard deviation of 20% over one year (20% - 20% = 400%%
variance), then over two years, you expect the same stock to earn 20% with a variance of
400%% + 400%% = 800%%. Thus, this stock’s risk (standard deviation) is v 800%% = 28.28%.
In other words, its mean goes up by a factor of 2, but its risk goes up only by a factor of V2 ~ 1.4.

Risk grows approximately with the squareroot of time.

Q 8.5. Please ignore compounding in this question:

1. What is the risk and reward of the “10% mean, 20% risk” investment that we just discussed
in the text over 4 years? What is your reward-risk ratio? (This ratio is called the Sharpe
ratio and often confusingly called a risk-reward ratio.)

2. What is the risk and reward of the same 10% mean, 20% risk investment over 9 years?
What is the Sharpe ratio?

3. Can you guess what the risk and reward of a stock with annual mean E and risk Sdv are
over T years? What is the Sharpe ratio?

The Best Mixing Portfolio — The Efficient Frontier

The second diversion is not just about how you calculate the risk and reward of a given portfolio,
but how the best possible portfolios looks like. And how well can your best portfolios do? The
details of this question are covered better in this chapter’s appendix (in the companion Web
chapter), but this section gives you a good though basic flavor.

Exhibit 8.3 plots the investment performance (mean and standard deviation) of various
portfolio combinations. Each portfolio has a unique spot in this coordinate system. This plot is
very common and familiar to all financiers. In such a plot, you want a portfolio that is higher on
the y-axis (has a higher expected rate of return) and lower on the x-axis (has a lower standard
deviation). That is, you would always want to slide towards the north-west (up-left) if you
can. One says a portfolio is inside the efficient frontier if it is south-east of another achievable
portfolio, and on the frontier if there is no portfolio north-west

In the top-left plot, you can invest only in M and A. They are both at the same spot in
the plot. Because both have a 4% mean rate of return, any combination of them does, too.
The best (lowest risk for given mean) portfolio is the left-most one, which happens to be the
equal-weighted combination. The top-right plot allows you to invest not only in M and A, but
in B, too. You can see that B helps greatly, but not because you would buy it by itself. In fact,
B itself is far inside the north-west boundary—the efficient frontier—which is the lowest-risk
highest-reward set of portfolios. (Its shape is always a hyperbola.) Presumably, smart investors
would buy only portfolios on this efficient frontier. Anything inside (south-east) of the frontier is
worse. Anything north-west of it is not obtainable. The equal-weighted portfolio is close to, but
not on the efficient frontier. This is often the case for large diversified portfolios—the S&P 500
is reasonably close, but not exactly on the efficient frontier. The bottom-left plot allows you to
invest in C, too. You can see how this expands the efficient frontier even further. In fact, it is
now possible to create a risk-free asset with a rate of return of about 4.5% by cleverly combining
investments. (Not that clever—invest about 0.377 in M, 0.261 in A, 0.091 in B, and 0.272 in C.)
But even if you do not want to play it safe, you can always do at least as well with more assets

Stocks have uncorrelated
returns. Thus, with time,
the risk grows more slowly
than the reward.

IMPORTANT

Finding the best choice.

What is the typical
mean-variance plot?

More assets expand your

opportunity set. The best
investment choices are on
the “efficient frontier."
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Exhibit 8.3: The Efficient Frontier. These plots show the mean and standard deviation of returns of portfolios composed
of the stocks that are indicated in the header. (They appeared earlier, e.g., in Exhibit 8.1.) The “*’ in the plots is the
equal-weighted portfolio. The north-west border is the efficient frontier. (Note that the two lower plots even allow you to
invest money and earn a risk-free rate. The lowest-risk portfolio is also called the minimum-variance portfolio.) The
dotted line is the frontier from a previous plot.
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than with fewer, so your efficient frontier has been pushed out further. The bottom-right plot
shows your possible investments if instead of access to C, you had access to E In both bottom
figures, in which there is a risk-free asset, the efficient frontier is a line (the limit case for the
hyperbola).

Q 8.6. How would the efficient frontier look if you were allowed to invest in all 5 assets, M, A,
B, C, and F?

8.3 Investor Preferences and Risk Measures

You now understand that diversification can reduce risk. You still need to understand what
projects the investors in your corporation—remember, this is corporate finance—would like you
to invest in on their behalves.

If Investors Care Only about Risk and Reward

Your intuition should now tell you that well-diversified portfolios—portfolios that invest in many
different assets—tend to have lower risk. As a corporate manager, it would be reasonable for you
to assume that your investors are smart. Because diversification helps investors reduce risk, you
can also reasonably believe that they are indeed holding well-diversified portfolios. The most
well-diversified portfolio may contain a little bit of every possible asset under the sun. Therefore,
like most corporate executives, you would probably assume that your investors’ portfolios are
typically the overall market portfolio, consisting of all available investment opportunities.

Why would you even want to make any assumptions about your investors’ portfolios? The
answer is that if you are willing to assume that your investors are holding the market (or
something very similar to it), your job as a corporate manager becomes much easier. Instead of
asking what each and every one of your investors might possibly like, you can just ask, “When
would my investors want to give me their money for investment into my firm’s project, given
that my investors are currently already holding the broad overall stock market portfolio?” The
answer will be as follows:

1. Your investors should like projects that offer more reward—this means higher expected
rates of return.

2. Your investors should like projects that help them diversify away some of the risk in the
market portfolio, so that their overall portfolios end up being less risky. Be careful, though.
This does not mean always going for the lowest-risk projects. Instead, this may well be
going for projects that behave very differently from other projects—unusual ones.

In sum, your corporate managerial task is to take those projects that your investors would like
to add to their current (market) portfolios. You should therefore search for projects that have
high expected rates of return and high diversification benefits with respect to the market. Let’s
now turn toward measuring this second characteristic: How can your projects aid your investors’
diversification, and how should you measure how good this diversification is?

* Diversification is based on imperfect correlation, or “non-synchronicity,” among investments.
It helps smart investors reduce the overall portfolio risk.

 Therefore, as a corporate manager, in the absence of contradictory intelligence, you should
believe that your investors tend to hold diversified portfolios. They could even hold
portfolios as heavily diversified as the “entire market portfolio.”

The main question.

Investors love
diversification: the more the
better. They could like the
market portfolio because it
is highly diversified.

If your investors like high
reward and low risk and hold
the market portfolio, you
can work out how your
projects affect them.

IMPORTANT
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Assume that investors hold
the overall market. Now
what?

Comovement determines risk
contribution.

Pretend M is not just "My
portfolio,” but the market.

Is B or C a better addition
to your M portfolio?

The combination MC has
almost the same risk as M.

The combination MC has
much lower risk than M.

* As a corporate manager, your task is to think about how a little of your project can aid
your investors in terms of its contribution to the risk and reward of their heavily diversified
overall portfolios. (You should not think about how risky your project is in itself.)

If we are willing to assume that our smart investors are holding all assets in the market, then
what projects offer them the best diversification?

Idiosyncratic Asset Risk (Sdv) and Risk Reduction

Obviously, diversification does not help if two investment opportunities always move in the
same direction. For example, if you try to diversify one $50 investment in M with another
$50 investment in M (which always has the same outcomes), then your risk does not decrease.
On the other hand, if two investment opportunities always move in opposite directions, then
diversification works extremely well: One is a buffer for the other.

Let’s formalize this intuition. For explanation’s sake, assume that “My Portfolio” M is also the
market portfolio.

Assume that B and C are two projects that your firm could invest in, but you cannot choose
both. Both offer the same expected rate of return (6%), but B has lower risk (5%) than C
(9%). As a manager, would you therefore assume that project B is better for your investors than
project C?

The answer is no. Let’s assume that your investors start out with the market portfolio, M.
Exhibit 8.4 shows what happens if they sell half of their portfolios to invest in either B or C. You
can call these two “(50,50)” portfolios MB and MC, respectively. Start with MB. If your investors
reallocate half their money from M into B, their portfolios would have the following rates of
return:

inS1 (&%) inS2(®) inS3 (V)
MB 1% 1% 6%

in S4 (&) Reward Risk
12% 5% 4.5%

The upper graph in Exhibit 8.4 plots the MB rates of return, plus the rates of return for both
M and B by themselves. The averages are all close to both original rates of return. There is not
much change in the risk of your portfolio in moving from a pure M portfolio to the MB portfolio.
The risk shrinks slightly, from 5.0% to 4.5%.

Now consider the combination of MC, which is the lower graph in Exhibit 8.4. By itself, C is
a very risky investment (9% risk). It also has the single-worst outcome of any investment you
have seen so far. However, if your investors instead reallocate half of their wealth from M into C,
their overall portfolio would have the following rates of return:

inS1 (k) inS2(¢#) inS3 (V) inS4 (M)
MC 7% 3% 8% 2% 5%

Reward Risk
2.6%

The risk is much lower! Look again at the exhibit—the MC outcomes are bunched much more
closely than either M or C alone. And MB, too, has a much wider range than the MC portfolio.
The MC combination portfolio is simply much safer—even though C by itself is much riskier. In
sum:
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InS1 InS2 InS3 InS4 Reward Variance Risk
(%) (* (¥) (®) E(r) Var'(r) de(r)

Investment M  -3% 3% 5% 11% 4% 25%% 5%
Investment B 5% -1% 7% 13% 6% 25%% 5%
Investment C 17% 3% 11% -7% 6% 81%% 9%
Portfolio MB 1% 1% 6% 12% 5%  20.5%% 4.5%
Portfolio MC 7% 3% 8% 2% 5% 6.5%% 2.6%

M . B 2 AN - 2

N L g

MB -10 @ 10 Q 20

v ! .
.5 \Ql

10 l 20

By .S

-10 20
M l |

MC °

~
C re” o¢ VQ

Exhibit 8.4: Combining the Market M with Either B or C. Although C is riskier than B by itself (look at C’s one disaster
outcome!), C is much better than B in reducing risk when it is added to the market portfolio M. This is because C tends to
move opposite to M, especially if M turns in its worst outcome (-3%).
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The implication for your
project choices as a
corporate manager:
Everything else equal, C
could better reduce
portfolio risk for your
investors despite its higher

idiosyncratic risk.

IMPORTANT

C reduces M's risk because
it tends to move in the

opposite direction.

Comovement can be
measured by a line slope
(beta). The market beta has
the asset's rate of return on
the y-axis and the market's

rate of return on the x-axis.

Portfolio Reward Risk Note

M (=M) alone 4% 5.0% Your investors’ (market) portfolios

B alone 6% 5.0%

C alone 6% 9.0% Cis riskier than B, if purchased by itself.
MB: half M, half B 5% 4.2% Portfolio risk decreases less if B is added
MC: half M, half C 5% 2.6% to M than when C is added to M!

You now know that C’s own high standard deviation compared to B’s is not a good indication
of whether C helps your investors reduce portfolio risk more or less than B. If your investors
are primarily holding M, then a very risky project like C can allow them to build lower-risk
portfolios. However, if your investors are not holding any assets other than C, they would not
care about C’s diversification benefits and only about its own risk. Thus, as a manager, you
cannot determine whether your investors would prefer you to invest in B or C unless you know
their entire portfolios. (Moreover, it could also depend on how your investors would like you to
trade off more overall reward against more overall risk.)

A project’s (own) standard deviation is not necessarily a good measure of how it influences the
risk of your investors’ portfolios. Indeed, it is possible that a project with a very high standard
deviation by itself may actually help lower an investor’s overall portfolio risk.

Q 8.7. Confirm the risk and reward calculations for the MB and MC portfolios in the table in
Exhibit 8.4.

(Market-) Beta and (Market-) Portfolio Risk Contribution

Why is portfolio C so much better than portfolio B in reducing the overall risk when held in
combination with the M portfolio? The reason is that C tends to go up when M tends to go down,
and vice-versa. The same cannot be said for B—it tends to move together with M. You could
call this “synchronicity” or “comovement.” It is why B does not help investors who are heavily
invested in the overall market in their quests to reduce their portfolio risks.

Exhibit 8.5 shows the comovement graphically. The rate of return on the market is on the
x-axis; the rate of return on the asset is on the y-axis. Its line slope in the plot is called the
market beta. (It is common to write the formula for a line as y = a + 3 - x, which is where the
Greek letter beta comes from.) A beta of 1 is a 45° diagonal line; a beta of 0 is a horizontal line.
A positive beta slopes up; a negative beta slopes down. In statistics, you should have learned
that you can find the beta by running a linear regression. If you don’t remember, no worries: In
Section 8.3, I will teach you again how to compute the beta. For now, take my word that the two
best-fitting lines are

g ~ 3.4% + (+0.64) - ry
rc ~ 12.4% + (-1.60) - 1y

(8.3)
= am t+ Pim - Im

This formula is sometimes called the market model. The subscripts on the betas remind you
what the variables on the x-axis and the y-axis are. The first subscript is always the variable on
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Exhibit 8.5: Possible Outcomes: Rates of Return of C and D versus Rate of Return of M. The four data points in each plot are
taken from Exhibit 8.1 on page 168. They are the rates of return on the portfolios M, B, and C, quoted in percent. In the
example, you know that these are the four true possible outcomes. In the real world, if the four points were not the true
known outcomes, but just the historical outcomes (sample points), then the slope would not be the true unknown beta,

but only the “estimated” beta.

the y-axis, and the second is the variable on the x-axis. Thus, g 1 ~ 0.64 and fc  ~ -1.60.
Market beta plays such an important role in finance that the name “beta” has itself become
synonymous for “market beta,” and the second subscript is usually omitted.

In finance, we care about the market model line. As a corporate manager, you want to know
how the rate of return on your own project comoves with that of the market. This is because
you typically posit that your smart investors are on average holding the market portfolio. The
best-fitting line between M and B slopes up. (It is also the same kind of line that you already saw
in Section 7.1.) The positive slope means that B tends to be higher when M is higher. In contrast,
the best-fitting line between M and C slopes down. The negative slope means that C tends to
be lower when M is higher (and vice-versa). Again, this market slope is a common measure of
expected comovement or countermovement—how much diversification benefit an investor can
obtain from adding a particular new project. A higher slope means more comovement and less
diversification; a lower, or even negative, slope means less comovement and more diversification.

Market beta is a big deal in
finance. It measures how
your project covaries with

the marke*} Market beta of Intel,

Sect. 7.1, Pg.149.
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IMPORTANT

Warning: All of this
beta-related risk measuring
is interesting only if your
investors are holding
(portfolios close to) the

overall market.

* Diversification works better if the new investment project tends to move in the opposite
direction from the rest of the portfolio than if it tends to move in the same direction.

It is often reasonable to assume that smart investors are already holding the market
portfolio and are now considering investing into just a little of one additional asset—your
firm’s new project.

* If this new investment asset has a negative beta with respect to the market (its “market
beta”), it means that it tends to go down when the market goes up, and vice-versa. If
this new investment asset has a positive beta with respect to the market, it means that it
tends to move together with the market. If this new investment asset has a zero beta with
respect to the market, it means that it moves independently of the market for all practical
purposes.

* The market beta is a good measure of an investment asset’s risk contribution for an investor
who holds the market portfolio. The lower (or negative) the market beta, the more this
investment helps reduce your investor’s risk.

* The market beta of an asset can be interpreted as a line slope, where the rate of return on
the market is on the x-axis and the rate of return on the new asset is on the y-axis. The
line states how you expect the new asset to perform as a function of how the market will
perform.

* You can think of market beta as a measure of “toxicity.” In a reasonable equilibrium, holding
everything else constant, risk-averse investors who are holding the market portfolio would
agree to pay more for assets that have lower market betas. They would pay less for assets
with higher market betas.

Before we conclude, some caveats are in order. From your perspective as the manager of a
company, perhaps a publicly traded company, it is reasonable to assume that your investors are
holding the market portfolio. It is also reasonable to assume that your new project is just a tiny
new additional component of your investors’ overall portfolios. We will staunchly maintain these
assumptions, but you should be aware that they may not always be appropriate. If your investors
are not holding something close to the market portfolio, then your project’s market beta would
not be a good measure of your projects’ risk contributions. In the extreme, if your investors are
holding only your project, market beta would not measure the project’s risk contribution at all.
This is often the case for entrepreneurs. They often have no choice but to put all their money
into one basket. Such investors should care only about their project’s standard deviation, and
not about the project’s market beta.
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When Beta? When Standard Deviation?

Do you care about your portfolio’s beta or your portfolio’s standard deviation? As CFO, do you
care about your firm’s beta or your firm’s standard deviation? Make sure you understand the
answers to these questions.

* As an investor, you usually care only about your portfolio’s standard deviation (risk), and
not about the risk of its individual ingredients.

* Typically, you do not care about the overall market beta of your portfolio. (The individual
market betas can help you design your overall portfolio.)

* If you are the CFO of a firm that wants to get into the market portfolio, so that investors
willingly buy your shares, then you should care about your own firm’s market beta.

 If you act purely in the interest of your diversified investors, you should not care about your
firm’s own standard deviation. Your investors can diversify away your firm’s idiosyncratic
risk. (If you care about your job or bonus, you might, however, take a different attitude
towards risk. Corporate governance is the subject of companion Web chapter.)

Portfolio Alpha

Although we shall not use it further in this book, the alpha intercept in Formula 8.3 also plays an
important role. Together, alpha and beta help determine how attractive an investment is. For
example, if the rate of return on the market will be 10%, Formula 8.3 tells you that you would
expect the rate of return on C to be

E(rc| ifryy =10%) ~ 12.4% + (-1.60) - 10% ~ -3.6%
The higher the alpha, the better the average performance of your investment given any particular
rate of return on the market. Just as investment professionals often call the market beta just beta,
they often call this specific intercept (here 12.4%) just alpha. (There is one small complication:

They usually first subtract the risk-free interest rate first both r¢ and ry; in their regressions—and
this usually does not make much difference.)

Computing Market Betas from Historical Rates of Return

So how can you actually compute beta? Let’s return to the assets in Exhibit 8.1. What is the
market beta of C? I have already told you that this slope is —1.6. To calculate it, I followed a
tedious, but not mysterious, recipe. Here is what you have to do:

1. Just as you did for your variance calculations, first translate all returns into deviations
from the mean. That is, for M and C, subtract their own means from every realization.

InS1(&%) InS2(®) InS3(¥) InS4(#)
Asset M Rate of Return -3% +3% +5% +11%
...in deviation from 4% mean 7% -1% +1% +7%
Asset C Rate of Return +17% +3% +11% -7%
...in deviation from 6% mean +11% -3% +5% -13%

2. Compute the variance of the series on the X-axis. This is the variance of the rates of return
on M. You have already done this in Formula 8.1: Var‘(rM) = 25%%.

IMPORTANT

Alpha has meaning, too, even
though you won't use it just
yet.

» Base Investment Assets,
Exhibit 8.1, Pg.168.

You can compute the
best-fit beta via a 4-step
procedure.

First, de-mean each rate of
return. (How demeaning!)

» Variance calculations,
Sect. 6.1, Pg.108.

> Variance of M,
Formula 8.1, Pg.169.
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For covariances, multiply
net-of-mean returns, then
average.

The beta is the covariance
divided by the variance.

You can confirm our
calculations using a
spreadsheet.

Think of market beta as the
characteristic of an asset.

The average beta of the
market (all stocks) is 1, not
0.

IMPORTANT

Why forture you with
computations? So you can
play with scenarios.

3. Now compute the probability-weighted average of the products of the two net-of-mean
variables. In this case,

Ya - (=7%) - (+11%) + Y4 - (-1%) - (-3%)
+ Vg (41%) - (+5%) + Ya - (+7%) - (-13%) = —40%%

COV(rM, rc) =

= Sum of (each probability times the returns’ products)

This statistic is called the covariance, here between the rates of return on M and C.

4. The beta of C with respect to the market M, formally ¢\ but often abbreviated as f3c, is
the ratio of these two quantities,

—40%%
25%%
Cov( v, Ie )
Var(ry)

~ -1.6

Bc =Bem = (8.4)

This slope of —1.6 is exactly the market beta we drew in Exhibit 8.5. Many spreadsheets
and all statistical programs can compute it for you: They call the routine that does this a linear
regression.

You should always think of an asset’s beta with respect to a portfolio as a characteristic
measure of your asset relative to an underlying base portfolio. The rate of return on portfolio P is
on the x-axis; the rate of return on asset i is on the y-axis. As we stated earlier, most often—but
not always—the portfolio P is the market portfolio, M, so f3;  is often just called the market beta
of i, or just the beta of i (and the second subscript is omitted).

Now think for a moment. What is the average beta of a stock in the economy? Equivalently,
what is the beta of the market portfolio? Replace C in Formula 8.4 with M:

_ COV(IM,TM)
M7 var(y)

If you look at the definition of covariance, you can see that the covariance of a variable with
itself is the variance. (The covariance is a generalization of the variance concept from one to two
variables.) Therefore, Cov(ry,ry ) = Var(ry ), and the market beta of the market itself is 1.
Graphically, if both the x-axis and the y-axis are plotting the same values, every point must lie on
the diagonal. Economically, this should not be surprising, either: the market goes up one-to-one
with the market.

The (value-weighted) average beta of all stocks in the market is 1 by definition.

Now that you know how to compute betas and covariances, you can consider scenarios for
your project. For example, you might have a new project for which you would guess that it will
have a rate of return of —-5% if the market returns —10%; a rate of return of +5% if the market
returns +5%; and a rate of return of 30% if the market returns 10%. Knowing how to compute a
market beta therefore makes it useful to think of such scenarios. (You can also use this technique
to explore the relationship between your projects and some other factors. For example, you
could determine how your projects covary with the price of oil to learn about your project’s oil
risk exposure.)
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Real-World Market Beta Estimation

In the real world, you will sometimes think in terms of such scenarios. However, you will more
often have to compute a market beta from historical rates of return, using overall stock market
returns and your own project (or similar project) returns. Fortunately, as we noted upfront, the
beta computations themselves are exactly the same. In effect, when you use historical data, you
simply assume that each time period was one representative scenario and proceed from there.
Nevertheless, there are some real-world complications you should think about:

1. Should you use daily, weekly, monthly, or annual rates of return? The answer is that the
best market beta estimates come from daily (or weekly) data. Annual data should be
avoided (except in a textbook in which space is limited). Monthly data should be used
only if need be.

2. How much data should you use? Most researchers tend to use three to five years of
historical rate of return data. This reflects a trade-off between having enough data and not
going too far back into ancient history, which may be less relevant. If you have daily data,
2-3 years works quite well. The minimum is 1 year, and more than 5 years is not useful.

3. Is the historical beta a good estimate of the future beta? It turns out that history can

sometimes be deceptive, especially if your estimated historical beta is far away from the
market’s beta average of 1. You should run a regression with daily historical returns
and “shrink” your historical beta toward the overall market beta of 1 (or below 1 if your
firm is small). This is important. For example, in the simplest such shrinker, you would
simply compute an average of the overall market beta of 1 and your historical market beta
estimate. If you computed a historical market beta of, say, 4 for your project, you should
work with a prediction of future market beta of about (4 + 1) /2 = 2.5 for your project.
Historical textbooks (including my own past editions) used to recommend averaging many
industry projects. This seemed like a good idea but was bad advice. In practice, this
approach has predicted very badly. For the most part, try to use your own historical daily
returns, and not that of other firms in the industry.
Many executives start with a statistical beta estimated from historical data (or they just
look up the statistical beta on a website, such as YAHOO! rinance [finance.yahoo.com]) and
then use their intuitive judgment to adjust it. It is unlikely that such adjustments are any
good. Even trained financial economists with years of experience calculating betas cannot
do this well. The only modification which tends to work is shrinking towards 1.

Q 8.8. Return to your computation of market beta of —1.6 in Formula 8.4. We called it f¢ y;, or
B¢ for short. Is the order of the subscripts important? That is, is Sy ¢ also -1.6?

Why Not Correlation or Covariance?

There is a close family relationship between covariance, beta, and correlation. The beta is the
covariance divided by one of the variances. The correlation is the covariance divided by both
standard deviations. The denominators are always positive. Thus, if the covariance is positive, so
are the beta and the correlation; if the covariance is negative, so are the beta and the correlation;
and if the covariance is zero, so are the beta and the correlation. The nice thing about the
correlation, which makes it useful in many contexts outside finance, is that it has no scale and is
always between —100% and +100%:

e Two variables that always move perfectly in the same direction have a correlation of 100%.

Practical advice to help you
estimate market beta in the
real world: Use 3-5 years of
daily observations and then
adjust.

Covariance and beta (and
correlation) always have the
same sign.
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In real life, you can do
calculations faster with a
spreadsheet.

Is history a good guide?

» Will history repeat itself?,
Sect. 7.1, Pg.155.

When working with a sample,
the (co)variance formula
divides by N-1. When
working with the population,
the (co)variance formula
divides by N.

* Two variables that always move perfectly in opposite directions have a correlation of
-100%.

* Two variables that are independent have a correlation of 0%.

Such simplicity makes correlations very easy to interpret. The not-so-nice thing about correlation
is that it has no scale and is always between —-100% and +100%. This means that two investments,
the second being a million times bigger than the first (all project rates of return multiplied by a
million), have the same correlation with the stock market. Yet the second investment goes up or
down with any slight tremor in the market by a million times more, which would of course mean
that it would contribute much more risk. The correlation ignores this fact, which disqualifies it
as a serious candidate for a project risk measure. Fortunately, beta takes care of scale—indeed,
the beta for the second project would be a million times larger. This is why we prefer beta over
correlation as a measure of risk contribution to a portfolio.

Spreadsheet Functions To Calculate Risk, Beta, and Reward

Doing all these calculations by hand is tedious. We computed these statistics within the context
of just four scenarios, so that you would understand the meanings of the calculations better.
However, you can do this a lot faster in the real world. Usually, you would download reams
of real historical rates of return data into a computer spreadsheet, like Excel or OpenOffice.
Spreadsheets have all the functions you need already built in—and you now understand what
their functions actually calculate. In practice, you would use the following functions in Excel:

average computes the average (rate of return) over a range of cells.

varp (or var.p) computes the (population) variance. If you worked with historical data instead
of known scenarios, you would instead use the var (or var.s) function. (The latter divides
by N -1 rather than by N, which I will explain in a moment.)

stdevp (or stdev.p) computes the (population) standard deviation. If you used historical data
instead of known scenarios, you would instead use the stdev (or stdev.s) function.

covar computes the population covariance between two series. (If Excel was consistent, this
function should be called covarp rather than covar.) Unlike the earlier functions, this and
the next two functions require two data cell ranges, not one.

correl computes the correlation between two series.

slope computes a beta. If range-Y contains the rates of return of an investment and range-X
contains the rates of return on the market, then this function computes the market beta.

Some Minor Statistical Nuances (Nuisances)

In this chapter, we have continued to presume (just as we did in Section 7.1) that historical data
gives us a good guide to the future when it comes to means, variances, covariances, and betas
(assuming you calculate them well—2 years of daily data, appropriately shrunk). Of course, this
is a simplification—and remember that it can be a problematic one. I already noted that this is
less of a problem for covariances, variances, and betas than it is for means. Rely on historical
means as predictors of future expected rates of return only at your own risk!

There is a second, minor statistical issue of which you should be aware. Statisticians often
use a covariance formula that divides by N—1, not N. Strictly speaking, dividing by N-1 is
appropriate if you work with historical data. These are just sample draws and not the full
population of possible outcomes. With a sample, you do not really know the true mean when you
de-mean your observations. The division by a smaller number, N -1, gives a larger but unbiased
covariance estimate. It is also often called the sample covariance. In contrast, dividing by N is
appropriate if you work with “scenarios” that you know to be true and equally likely. In this case,
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the statistic is often called the population covariance. The difference rarely matters in finance,
where you usually have a lot of observations—except in our book examples where you have only
four scenarios. (For example, dividing by N = 1,000 and by N = 1,001 gives almost the same
number.)

The only reason why you even needed to know this distinction is that if you use a program
that has a built-in variance or standard deviation function, you should not be surprised if you get
numbers different from those that you have computed in this chapter. In some programs, you
can get both functions. In Excel, you can use the varp and stdevp population statistical functions
to get the population statistics, not the var and stdev functions that would give you the sample
statistics.

Beta is not affected by whether you divide the variance/covariance by N or N -1, because
both numerator (covariance) and denominator (variance) are divided by the same number.

Furthermore, statisticians distinguish between underlying unknown statistics and statistics
estimated from the data. For example, they might call the unknown true mean u and the sample
mean m (or X). They might call the unknown true beta " and the estimated sample beta a beta
with a little hat ([3). And so on. Our book is casual about the difference due to lack of space,
but keep in mind that whenever you work with historical data, you are really just working with
sample estimates.

8.4 Interpreting Some Typical Stock Market Betas

The market beta is the best measure of “diversification help” for an investor who holds the stock
market portfolio and considers adding just a little of your firm’s project. From your perspective as
a manager seeking to attract investors, this is not a perfect, necessarily true assumption—but it is
a reasonable one. Recall that we assume that investors are smart, so presumably they are holding
highly diversified portfolios. To convince your market investors to like your $10 million project,
you just need the average investor to want to buy $10 million divided by about $20 trillion (the
stock market capitalization), which is 1/2,000,000 of their portfolios. For your investors, your
corporate projects are just tiny additions to their (likely) market portfolios.

You can easily look up the market betas of publicly traded stocks on many financial websites.

Exhibit 8.6 lists the betas of some randomly chosen companies in June 2016 from YAHOO! FinaNcE
and from Google’s finance site. Most company betas are in the range of around 0 to about
2. (American Airlines’ historical market beta was so high that Google even refused to admit
to its own estimate.) A beta above 1 is considered risk-increasing for an investor holding the
overall stock market (it is riskier than the stock market itself), while a beta below 1 is considered
risk-reducing. Negative betas are rare and usually temporary. Gold is an asset that sometimes
did and sometimes did not have a negative market beta (see Barrick Gold here). In this decade,
long-term Treasury bonds had negative betas; but in past decades, it was positive. In almost all
cases, it is better to estimate future market betas with firms’ own historical market betas (though
shrunk) rather than their industry market betas.

Market beta has yet another nice intuitive interpretation: It is the degree to which the
firm’s value tends to change if the stock market changes. For example, AMD’s market beta of
approximately 2 says that if the stock market will return an extra 10% next year (above and
beyond its expectations), AMD’s stock will likely return an extra 2 - 10% = 20% (above and
beyond AMD’s expectations). For now, let’s say that the expected rate of return on the market
is 6% and the expected rate of return on AMD is 9%. Then, if the market were to turn in -4%
(10% less than its expected return), you would expect AMD to turn in 9% + 2 - (-10%) = —-11%.
Conversely, if the market were to turn in 16% (10% more than its expected return), you would
expect AMD to turn in 9% + 2 - (10%) = 29%. AMD’s high market beta is useful because it

This is important to keep in
mind if you use a
spreadsheet to check your
work.

For market beta, the divisor
cancels out and does not
matter.

My fault: Our notation
should have distinguished
between true population and
estimated sample statistics.

Market beta works well
when investors are holding
the market and adding only a
little of your project.

Most financial websites
publish market beta
estimates.

Beta can be viewed as the
marginal change of your
project with respect to the
market.
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Stock Mkt Market Beta Stock Mkt Market Beta
Company Ticker Cap Yahoo  Google Company Ticker Cap vahoo  Google
Intel INTC 151 1.06 0.96 IBM IBM 146 0.81 0.71
Coca-Cola KO 199 0.82 0.52 PepsiCo PEP 149  0.69 049
AMD AMD 34 213 229 NVIDIA NVDA 25 119 131
Ford F 52 126 1.37 General Motors GM 45 1.59 1.71
Apple Inc AAPL 541 149 1.03 Google (Alphabet) GOOG 493  1.03 N/A
Citigroup C 129 1.54 197 Morgan Stanley MS 49 1.45 1.63
Goldman Sachs GS 66 132 1.69 J.P Morgan JPM 233 118 1.14
Volkswagen VLKAY 75 189 1.83 Sony SNE 35 149 1.83
Philip Morris PM 157 1.02  0.95 Procter&Gamble PG 221  0.65 0.49
American Airlines AAL 19 3.95 N/A Southwest Luv 28 1.29 1.03
Boeing BA 84 1.23 1.08 Airbus AIR 41 N/A N/A
Hewlett-Packard HPQ 23 1.54 1.70 Yahoo YHOO 35 2.16 1.48
Exxon Mobil XOM 373 090 0.83 Barrick Gold ABX 23 -0.20 -0.01

Exhibit 8.6: Some Market Betas and Market Capitalizations in June 2016. “MktCap” is the equity market value in billions
of dollars. YAHOO! rinance explained its betas as follows: The Beta used is Beta of Equity. Beta is the monthly price change of
a particular company relative to the monthly price change of the S&P500. The time period for Beta is 3 years (36 months)
when available. YAHOO! rinance ignores dividends, but this usually makes little difference. I could not find an explanation
for Google’s market betas. I hope it’s not a secret.

informs you that if you hold the stock market, adding AMD stock would not help you much with
diversifying your market risk. Holding AMD would amplify any market swings.

But in any case, AMD’s market beta does not tell you whether AMD is priced too high or
too low on average, so that you should buy or avoid it in the first place. Market beta is not a
measure of how good an investment AMD is. (This would be the aforementioned alpha [which
> Alpha, can be interpreted as an expected rate of return]. In the next chapter, you will learn that the
Pg.181. CAPM formula relates market beta to the expected rate of return, giving you a commonly used
benchmark for alpha.)

Beta is not alpha.

Betas have another common important use. Let’s say that you want to speculate that AMD
will go up, but you do not want to be exposed to market risk. The AMD beta of 2 tells you that if
you buy long $100 of AMD stock and go short $200 in the stock market (which you can do easily,
e.g., by shorting the SPDR ETF), your overall portfolio is not likely to be subject to market-wide
swings. After all, for every $1 of general decrease (increase) in the overall stock market, AMD
goes up (down) on average by $2. Thus, the market-eta of 2 is also the hedge ratio that tells
you how you can “immunize” a speculative stock position against market-wide changes.

Beta is also a “hedge ratio.”

Q 8.9. You estimate your project x to return —5% if the stock market returns —10%, and +5%
if the stock market returns +10%. What would you use as the market beta estimate for your
project?

Q 8.10. You estimate your project y to return +5% if the stock market returns -10%, and -5%
if the stock market returns +10%. What would you use as the market beta estimate for your
project?
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8.5 Market Betas for Portfolios and Conglomerate Firms

Let’s go back to your managerial perspective of figuring out the risk and return of your corporate
projects. Many small projects are bundled together, so it is very common for managers to consider
multiple projects already packaged together as one portfolio. For example, you can think of
your firm as a collection of divisions that have been packaged together. If division B is worth
$1 million and division C is worth $2 million, then a firm consisting of B and C is worth $3
million. B constitutes 1/3 of the portfolio “Firm” and C constitutes 2/3 of the portfolio “Firm.”
This kind of portfolio is called a value-weighted portfolio because the weights correspond to
the market values of the components. (A portfolio that invests $100 in B and $200 in C would
also be value-weighted. A portfolio that invests equal amounts in the constituents—for example,
$500 in each—is called an equal-weighted portfolio.)

Thus, as a manager, you have to know how to work with a portfolio (firm) when you have all
the information about all of its underlying component stocks (projects). If I tell you the expected
rate of return and market beta of each project, can you tell me what the overall expected rate
of return and overall market beta of your firm are? Let’s try it. Use the B and C stocks from
Exhibit 8.1 on Page 168, and call BCC the portfolio (or firm) that consists of 1/3 investment in
division B and 2/3 investment in division C.

Actually, you already know that you can compute the returns in each scenario, and then the
risk and reward.

In S1 InS2 InS3 InS4 Reward Variance? Risk
(%) (®) ) (&) E(r Var'(r) de(r)

~—

Investment B 5% -1% 7% 13% 6% 25%% 5%
Investment C 17% 3% 11% -7% 6% 81%% 9%
Portfolio BCC 13% 1.67% 9.67% -0.33% 6%  ~30%% ~5.5%

It is also intuitive that expected rates of return can be averaged. In our example, B has an
expected rate of return of 6%, and C has an expected rate of return of 6%. Consequently, your
overall firm BCC has an expected rate of return of 6%, too. Check this.

Unfortunately, you cannot compute value-weighted averages for all statistics. As the table
shows, variances and standard deviations cannot be averaged (1/3 - 25%% + 2/3 - 81%% =~
62.3%%, which is not the variance of 30%%; and 1/3 - 5% +2/3 - 9% = 7.67%, which is not the
standard deviation of 5.5%.)

But here is a remarkable and less intuitive fact: Market betas—that is, the projects’ risk
contributions to your investors’ market portfolios—can be averaged! That is, I claim that the beta
of BCC is the weighted average of the betas of B and C. In Formula 8.3, you already computed
the market-betas for as +0.64 and -1.60. So, their value-weighted average is

Becc = 13- (+0.64) + 2/3- (-1.60) ~ -0.8533 (8.5)
wg-Bg  + wc-fic

You will be asked to confirm this conclusion in Q8.11.

Portfolios consist of
multiple assets (themselves
possibly portfolios).
Definitions of
value-weighted and
equal-weighted portfolios.

What are the expected rate
of return and market beta
of a portfolio?

You can average actual rates
of return.

You can average expected
rates of return.

(But you cannot average
variances or standard
deviations!)

News flash: You can also
average market betas.

» Market betas of B and C,
Formula 8.3, Pg.178.
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IMPORTANT

A firm is a portfolio of debt
and equity. Thus, the
portfolio formulas apply to
the firm (with debt and
equity as its components),
tool

* You can think of the firm as a weighted investment portfolio of components, such as
individual divisions or projects. For example, if a firm named ab consists of only two
divisions, a and b, then its rate of return is always

Tah = Wy "Iy + Wy - Iy
where the weights are the relative values of the two divisions. (You can also think of this

one firm as a “subportfolio” within a larger overall portfolio, such as the market portfolio.)

* The expected rate of return (“reward”) of a portfolio is the weighted average expected
rate of return of its components,

E(rap) = wa- E(ra) +wp - E(1p)
Therefore, the expected rate of return of a firm is the weighted average rate of return of
its divisions.
* Like expected rates of return, market betas can be weighted and averaged. The beta of a

firm—i.e., the firm’s “risk contribution” to the overall market portfolio—is the weighted
average of the betas of its components,

Bab = Wa - fa + Wp - Bp
The market beta of a firm is the weighted average market beta of its divisions.

* You cannot do analogous weighted averaging with variances or standard deviations.

You can think of the firm not only as consisting of divisions, but also as consisting of debt and
equity. For example, say your $400 million firm is financed with debt worth $100 million and
equity worth $300 million. If you own all debt and equity, you own the firm. What is the market
beta of your firm’s assets? Well, the beta of your overall firm must be the weighted average beta
of its debt and equity. If your $100 million in debt has a market beta of, say, 0.4 and your $300
million of equity has a market beta of, say, 2.0, then your firm has a market beta of

14 - (0.4) + 3/s - (2.0) = 1.6 (8.6)
Debt value Equity value)
ik Ainivand N X + —_2 7 ANV ], , — /
(Firm Value) Ppebe ( Firm value ﬁEqmty Pirm

This 1.6 is called the asset beta to distinguish it from the equity beta of 2.0 that financial
websites report. Put differently, if your firm refinances itself to 100% equity (i.e., $400 million
worth), then the reported market beta of your equity on YAHOO! rinance would fall to 1.6. The
asset beta is the measure of your firm’s projects’ risk contribution to the portfolio of your investors.
It determines the cost of capital that you should use as the hurdle rate for projects that are similar
to the average project in your own firm.

Q 8.11. Let’s check that the beta combination formula (Formula 8.5 on page 187) is correct.
Start with the BCC line in the table on Page 187

1. Write down a table with the demeaned market rate of return and demeaned BCC rate of
return in each of the four possible states.
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2. Multiply the demeaned rates of return in each scenario. This gives you four cross-products,
each having units of %%.

3. Compute the average of these cross-products. This is the covariance between BCC and M.
4. Divide the covariance between BCC and M by the variance of the market.

5. Which is faster—this route or Formula 8.5? Which is faster if there are a hundred possible
scenarios?

Q 8.12. Confirm that you cannot take a value-weighted average of component variances (and
thus of standard deviations) the same way that you can take value-weighted average expected
rates of return and value-weighted average market betas.

1. What is the value-weighted average variance of BCC?

2. What is the actual variance of BCC?

Q 8.13. Consider an investment of 2/3 in B and /3 in C. Call this new portfolio BBC. Compute
the variance, standard deviation, and market beta of BBC. Do this two ways: first from the four
individual scenario rates of return of BBC, and then from the statistical properties of B and C
itself.

Q 8.14. Assume that a firm will always have enough money to pay off its bonds, so the beta of
its bonds is 0. (Being risk free, the rate of return on the bonds is obviously independent of the
rate of return on the stock market.) Assume that the beta of the underlying assets is 2. What
would financial websites report for the beta of the firm’s equity if it changes its current capital
structure from all equity to half debt and half equity? To 90% debt and 10% equity?

Q 8.15. (Advanced) Does maintaining a value-weighted or an equal-weighted portfolio require

more trading? (Hint: Make up a simple example.)

Summary

This chapter covered the following major points:

* The expected rate of return is a measure of expected
reward:
E ( I'p ) =

Sum over Scenarios [rp in Scenario]
N

* The variance is (roughly) the average squared devia-
tion from the mean.

Sum over Scenarios{[rp in Scenario] - E ( p ) }2

N (orN-1)

If you work with known scenario probabilities, divide
by N. If you work with a limited number of historical
observations that you use to guesstimate the future
scenarios, then divide by N—1. (With a lot of his-
torical data, N is very large and it really makes no
difference what you divide by.) The variance is an
intermediate input to the more interesting statistic,
the standard deviation.

Var(rp) =

The standard deviation is the square root of the vari-
ance. The standard deviation of a portfolio’s rate of
return is the common measure of its risk.

Sdv(rp) = 4/ Var(rp)

Diversification reduces the risk of a portfolio.

Corporate executives typically assume that their in-
vestors are smart enough to hold widely diversified
portfolios, which resemble the overall market port-
folio. The reason is that diversified portfolios offer
higher expected rates of return at lower risks than
undiversified ones.

An individual project’s own risk is not a good measure
of its risk contribution to a smart diversified investor’s
portfolio.

Market beta is a good measure of an individual as-
set’s risk contribution for an investor who holds the
market portfolio.
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* Market betas for typical stocks range between 0 and lated and always share the same sign.
2.5.
e It requires straightforward plugging of data into for- * Like expected rates of return, betas can be averaged
mulas to compute beta, correlation, and covariance. (using proper value-weighting, of course). However,
These three measures of comovement are closely re- variances or standard deviations cannot be averaged.

Asset beta, 188.

Equity beta, 188.

Preview of the Chapter Appendix in the Companion

The appendix to this chapter explains

Covariance,

how risk and reward vary for different combination portfolios.

how one can use the “matrix” of variances and covariances to quickly recompute the overall
portfolio risk of different combinations.

what optimal combination portfolios are. This is the efficient frontier (mean-variance
efficiency or MVE), which you have already briefly encountered in this chapter. It is the
cornerstone of modern investment theory.

how the availability of a risk-free asset makes the optimal portfolio always a combination
of this risk-free asset and some tangency portfolio. Thus, every rational investor would
buy only these two assets. The more risk-averse, the more an investor would allocate from
the risk-free into the risky tangency asset.

how market beta coincidentally affects idiosyncratic risk, and how it influences market-
conditional realized rates of return.

Keywords

182. Diversification, 171.  Efficient frontier, 173. Equal-weighted portfolio, 187.

Expected rate of return, 169. Hedge ratio, 186. Linear regression, 182. MVE, 190. Market

beta, 178.  Market model, 178. = Market portfolio, 175.  Mean-variance efficiency, 190. = Minimum-variance

portfolio, 174.
portfolio, 187.

Portfolio risk,
Variance, 169.

170. Reward, 169. Sharpe ratio, 173. Standard deviation, 170. Value-weighted
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Answers

Q 8.1 The average deviation from the mean is always 0.

Q 8.2 The mean of portfolio M was 4%. Adding 5% to each re-
turn will give you a mean of 9%, which is 5% higher. The variance
and standard deviation remain at the same level, the latter being
5%. If you think of 5% as a constant ¢ = 5%, then you have just
shown that E(r+c) = E(r) +cand Sdv(r+c) = Sdv(r).

Q 8.3 The reward of portfolio C is its expected rate of return, i.e.,
[(17%)+3%+11%+(-7%)]/4 = 6%. (We can just divide by 4, rather
than multiply each term by 1/4, because all outcomes are equally
likely.) The variance of C is [ (11%)2+(3%)2 +(5%)2+(-13%)2]/4 =
81%%. The standard deviation, which is our measure of risk, is

v 81%% ~ 9%.

Q 8.4 The combination portfolio MA of 90% in M and 10% in A
has rates of return of —2.4%, 3.8%, 4.2%, and 10.4%.

1. Thus, its mean rate of return is 4%. Its variance is 20.5%%.
Its standard deviation is approximately 4.528%.

2. Tt would look more spread out, because it has higher standard
deviation.

Q8.5 1. The reward is 4 - 10% = 40%. The variance is
4-400% = 1,600%%. Thus, the standard deviation (risk)
is 4/ 1,600%% = 40%. The Sharpe ratio is 1.

2. The reward is 90%. The risk is v/9 - 400%% = 3 - 20% = 60%.
The Sharpe ratio is 1.5

3. The reward is T-E . The standard deviation is ¥'T - Sdv . The
Sharpe ratio is (vVT- E)/Sdv.

Q 8.6 Exhibit 8.3 shows that by combining M, A, B, and C, you
get a risk-free rate of 3.6%; and investing in F alone gets you a
risk-free rate of 1%. This means that you could borrow at 1% and
invest at 3.67%, both risk-free—an arbitrage. The efficient frontier
would be a vertical line at 0. Obviously, this could never be the case
in the real world.

Q 8.7 For the MB portfolio, the portfolio combination rates of
return in the four scenarios were on the bottom of Exhibit 8.4 on
Page 177. Confirm them first:

In S1 (&): 0.5 (-3%) + 0.5-(5%) = 1%
InS2 (#): 05-(B3%) + 0.5:-(-1%) = 1%
InS3(¥): 0.5-(5%) + 0.5:(7%) = 6%
In S4 (#): 0.5-(11%) + 0.5- (13%) = 12%
The expected rate of return is
1% + 1% + 6% + 12%
E(I‘MB) _ 0 ( () o _ 50

4

The portfolio variance is

[(1% - 5%)2 + (1% — 5%)>
+ (6% — 5%)? + (12% — 5%)%]/4

Var(ryg) =

Therefore, Sdv(MC) = v/20.5%% ~ 4.52%.
For the MC portfolio,

In S1 (&): 0.5-(=3%) + 0.5-(17%) = 7%
InS2 (#): 05-B%) + 05-B%) = 3%
InS3(¥): 05:-(5%) + 0.5-(11%) = 8%
InS4 (#): 0.5-(11%) + 0.5 - (-7%) = 2%
The expected rate of return is
E(rMc) _ 7% + 3% + 8% + 2% — 5

4
The variance is Var(MC) = [ (7%-5%)?+(3%-5%)?+(8%-5%)+
(2% - 5%)]/4 = 26%% Therefore, Sdv(MC) = v6.5%% ~
2.55%.

Q 8.8 The order of subscripts on market beta is important.
Algebraically, oy = [cov(re,ry)]/[var(ry)], while Byc =
[cov(rc,ry)]/[var(rc)]. The denominator is different. If you work
this out, fy; ¢ ~ -0.49. Fortunately, you will never ever need to
compute By c. I only asked you to do this computation so that you
realize that the subscript order is important.

Q 8.9 The market beta of this project is

_(=5%) - (+5%)
T (=10%) — (+10%)

rx,2 - rx,l

ﬁx,M = = +0.5

I'm2 —Im,1
(This is not “half as volatile” because market beta is not a measure
of volatility.)

Q 8.10 Using the same formula, the market beta of y is [ (+5%) —
(=5%)1/[ (=10% — (+10%)] = -0.5.

Q8.11 1. Start with our standard table:
& ¢ v & E(r) Var(r) Sdv(r)
BCC 13% 1.67% 9.67% -0.33% 6% 30%% 5.5%
...indev 7% —4.33% 3.67% —6.33%
M -3% +3% +5% +11% 4% 25%% 5%
..indev-7% -1% 1% +7%

(Variances and standard deviations are rounded.)

2. The four cross-products are —-49%%, 4.33%%, 3.67%%, and
—-44.33%%.

3. The average (covariance) is —21.33%%.

. The beta is —-21.33/25 ~ -0.8533.

5. This is the more painful route—and it is more painful when
there are more possible scenarios.

N
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Q 8.12 Actually, this was already in the text. BCC has a variance
of about 30%%, while the value-weighted average of the variances
is about 62.3%%.

Q 8.13 The equivalent table is

& ¢ v & E(r) Var(r) Sdv(r)

B 5% -1% 7% 13% 6% 25%% 5%
C 17% 3% 11% -7% 6% 81%% 9%
BBC 9% 0.33% 8.33% 6.33% 6% 11.67%% 3.4%

The market beta is easiest to compute as 2/3 - ffig + 13- fic ~
2/3+(0.64) + 15+ (~1.60) ~—0.11.

Q 8.14 For a firm whose debt is risk free, the overall firm beta

is Brim = 0.5 ﬂEquity + 0.5 Bpept- Thus, 0.5 - ﬁEquity +0.5-0=2.

Solve for fgquity = Prirm/0.5 = 4. For the (90%, 10%) case, the
equity beta jumps to fgquiry = 2/0.1 = 20.

Q 8.15 Value-weighted portfolios usually require no trading (un-
less there is a payout, like a dividend). For example, using the num-
bers from this section, if B triples from $1 million to $3 million and
C halves from $2 million to $1 million, your original value-weighted
portfolio or firm would become $3+$1 = $4 million. You would still
be exactly value-weighted. B would now constitute 75% of the firm
and C 25% of the firm. In contrast, in an originally equal-weighted
portfolio, your $1.5 million in B would become $4.5 million, your
$1.5 million in C would become $0.75 million, and your portfolio
would be worth $5.25 million. This means you would want to have
$2.625 million invested in each. To maintain an equal-weighted
portfolio, you would have to sell some stock in your past winner
to buy some stock in your loser. Only a value-weighted portfolio
requires no trading. Another interesting aspect is that if you do not
trade, in the very long run, any portfolio will look more and more
value-weighted, because those stocks that have had large returns
will automatically garner a larger weight both in your portfolio and
the economy.
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End of Chapter Problems

Q 8.16. Multiply each rate of return for M by 2.0. This
portfolio offers —6%, +6%, +10%, and +22%. Compute the
expected rate of return and standard deviation of this new
portfolio. How do they compare to those of the original
portfolio M?

Q 8.17. The following table contains the closing year-end
prices of the Japanese stock market index, the Nikkei-225.
Assume that each historical rate of return was exactly one
representative scenario (independent sample draw) that
you can use to estimate the future. If a Japanese investor
had purchased a mutual fund that imitated the Nikkei-225,
what would her annual rates of return, compounded rate of
return (from the end of 1984 to the end of 2010), average
rate of return, and risk have been?

Year N-225 Year N-225 Year N-225
1984 11,474 1993 17,417 2002 8,579
1985 13,011 1994 19,723 2003 10,677
1986 18,821 1995 19,868 2004 11,489
1987 22,957 1996 19,361 2005 16,111
1988 29,698 1997 15,259 2006 17,225
1989 38,916 1998 13,842 2007 15,308
1990 24,120 1999 18,934 2008 8,860
1991 22,984 2000 13,786 2009 10,546
1992 16,925 2001 10,335 2010 10,229

Q 8.18. Compute the value-weighted average of 1/3 of the
standard deviation of B and 2/3 of the standard deviation
of C. Is it the same as the standard deviation of a BCC
portfolio of 1/3 B and 2/3 C, in which your investment rate
of return would be 1/3 - rg +2/3 - rc?

Q 8.19. Why is it so common to use historical financial
data to estimate future market betas?

Q 8.20. What are the risk and reward of a combination
portfolio that invests 40% in M and 60% in B?

Q 8.21. Consider the following five assets, which have
rates of return in six equally likely scenarios:

Awful Poor Med. Okay Good Great

Asset P1 2% 0% 2% 4% 6% 10%
Asset P2 -1% 2% 2% 2% 3% 3%
Asset P3 -6% 2% 2% 3% 3% 1%
Asset P4 -4% 2% 2% 2% 2% 20%
Asset P5 10% 6% 4% 2% 0% 2%

1. Assume that you can only buy one of these assets.
What are their risks and rewards?

2. Supplement your previous risk-reward rankings of
assets P1-P5 with those of combination portfolios
that consist of half P1 and half of each of the other 4
portfolios, P2-P5. What are the risks and rewards of
these four portfolios?

3. Assume that P1 is the market. Plot the rates of re-
turn for P1 on the x-axis and the return for each of
the other stocks on their own y-axes. Then draw
lines that you think best fit the points. Do not try
to compute the beta—just use the force (and your
eyes), Luke. If you had to buy just a little bit of one
of these P2-P5 assets, and you wanted to lower your
risk, which would be best?

Q 8.22. Assume that you have invested half of your wealth
in a risk-free asset and half in a risky portfolio P Is it theo-
retically possible to lower your portfolio risk if you move
your risk-free asset holdings into another risky portfolio
Q? In other words, can you ever reduce your risk more by
buying a risky security than by buying a risk-free asset?

Q 8.23. Is it wise to rely on historical statistical distribu-
tions as your guide to the future?

Q 8.24. Look up the market betas of the companies in
Exhibit 8.6. Have they changed dramatically since June
2016, or have they remained reasonably stable?

Q 8.25. You estimate your project to return —20% if the
stock market returns —10%, and +5% if the stock market
returns +10%. What would you use as the market beta
estimate for your project?

Q 8.26. Go to YAHOO! rinance. Obtain two years’ worth of
daily stock rates of return for PepsiCo, Coca Cola, and for
the S&P 500 index. Use a spreadsheet to compute PepsiCo’s
and Coca-Cola’s historical market betas. (Note: For future
market betas, you should further shrink towards 1.)
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Q 8.27. Consider the following assets:

Bad Okay Good
Market M —-5% 5% 15%
Asset X -2% -3% 25%
Asset Y —4% -6% 30%

1. Compute the market betas for assets X and Y.

2. Compute the correlations of X and Y with M.

3. Assume you were holding only M. You now are selling
off 10% of your M portfolio to replace it with 10%
of either X or Y. Would an M&X portfolio or an M&Y
portfolio be riskier?

4. Is the correlation indicative of which of these two
portfolios ended up riskier? Is the market beta in-
dicative?

Q 8.28. Compute the expected rates of return and the port-
folio betas for many possible portfolio combinations (i.e.,
different weights) of M and F from Exhibit 8.1 on Page 168.
(Your weight in M is 1 minus your weight in E) Plot the
two against one another. What does your plot look like?

Q 8.29. Are historical covariances or means more trustwor-
thy as estimators of the future?

Q 8.30. Are geometric average rates of return usually
higher or lower than arithmetic average rates of return?

Q 8.31. The following represents the probability distribu-
tion for the rates of return for next month:

Probability PfioP Market M
s -20% -5%
2/e -5% +5%
2fe +10% 0%
e +50% +10%

Compute by hand (and show your work) for all the follow-
ing questions.

What are the risks and rewards of P and M?

What is the correlation of M and P?

What is the market beta of P?

If you were to hold 1/3 of your portfolio in the risk-free
asset, and 2/3 in portfolio B what would its market
beta be?

Eab N o

Q 8.32. Download the historical daily stock prices for the
S&P 500 index and for VPACX (the Vanguard Pacific Stock
Index mutual fund) from YAHOO! rinance, beginning Jan-
uary 1 three years ago and ending December 31 of last year.
Load them into a spreadsheet and position them next to one
another. Compute the risk and reward. Compute VPACX’s
market beta, i.e., with respect to the S&P 500 index. How
do your historical estimates compare to the Fund Risk re-
ported by YAHOO! rinance and other financial websites? If
you were interested not in the historical but future market
beta, would this be a good estimate?

Q 8.33. Download 3 years of historical daily (dividend-
adjusted) prices for Intel (INTC) and the S&P 500 from
YAHOOQ)! FINANCE.

1. Compute the daily rates of return.

2. Compute the average rates of return and risk of port-
folios that combine INTC and the S&P 500 in the fol-
lowing proportions: (0.0,1.0), (0.2,0.8), (0.4,0.6),
(0.6,0.4), (0.8,0.2), (1.0,0.0). Then plot them
against one another. What does the plot look like?

3. Compute the historical market beta of Intel.

Q 8.34. Why do some statistical packages estimate covari-
ances differently (and different from those we computed
in this chapter)? Does the same problem also apply to
expected rates of return (means) and betas?
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Data and Programming for Masters Students

Task A: The book website contains a .csv list of the 100 largest stocks as of 2005. Pick one large stock. Using ten years of
daily stock returns from 2006 to 2015 (e.g., from CRSP or scraped from YAHOO! rinance), plot the average annualized
rate of return (on the y-axis) and the annualized standard deviation (on the x-axis [best calculated from daily stock
returns, i.e., scaled by +2521). This is one point in an x-y plot. Now repeat this for the other 99 stocks, all in the
same graph. Next, do the same exercise in a new graph, but with portfolios of two stocks each. It is easiest to assume
that you are rebalancing your portfolio to 50% every period (so that you do not have to constantly update investment
weights). Next, do the same exercise in a new graph but with five stocks, assuming you rebalance to 20% every
period. Next, do the same exercise in a new graph but with 20 stocks, assuming you rebalance to 5% every period.
What do you see when you compare the graphs?

Task B: Using only 2015 data, calculate a market-beta estimate (MBE) for each stock as of Dec 31, 2015. Do the same for
2016 data. How well do the 2015 market beta estimates predict their own future 2016 market beta estimates? To

learn this, calculate the RMSE, which is \/ (MBEgg16 — MBE)2 /N, where MBE is your estimate MBEy(5.
Try some variations:

1. Do the beta estimation with daily or monthly stock returns (note that this gives you four combinations, i.e., you
can predict monthly betas with daily betas);

2. Take the average of each of your 2015 MBEs and the number 1.

3. Calculate 0.8 -1/(1 + se(MBE;)) * MBE; + 0.2 - Target, where se(MBE) is the standard error of the time-series
regression beta, and the Target is 1.0 for the very largest firms by market-capitalization, 0.5 for the smallest
firms (and fractions in between based on market-capitalization as you like).






